• 1.

    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).

    Google Scholar

  • 2.

    Vincent, W. F. in The Palgrave Handbook of Arctic Policy and Politics (eds Coates, K. S. & Holroyd, C.) 507–526 (Palgrave Macmillan, 2020).

  • 3.

    Obu, J. How much of the Earth’s surface is underlain by permafrost? J. Geophys. Res. Earth Surf. 126, e2021JF006123 (2021).

    Google Scholar

  • 4.

    Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).


    Google Scholar

  • 5.

    Heijmans, M. M. P. D. et al. Tundra vegetation change trajectories across permafrost environments and consequences for permafrost thaw. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).


    Google Scholar

  • 6.

    Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).


    Google Scholar

  • 7.

    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth. Environ. 1, 420–434 (2020).

    Google Scholar

  • 8.

    Jones, B. M. et al. Lake and drained lake basin systems in Arctic and Boreal permafrost regions. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00238-9 (2022).


    Google Scholar

  • 9.

    Whiteman, G., Hope, C. & Wadhams, P. Climate science: vast costs of Arctic change. Nature 499, 401–403 (2013).

    Google Scholar

  • 10.

    Melvin, A. M. et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc. Natl Acad. Sci. USA 114, E122–E131 (2017).

    Google Scholar

  • 11.

    Alvarez, J., Yumashev, D. & Whiteman, G. A framework for assessing the economic impacts of Arctic change. Ambio 49, 407–418 (2020).

    Google Scholar

  • 12.

    Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    Google Scholar

  • 13.

    Streletskiy, D. in Snow and Ice-Related Hazards, Risks, and Disasters (eds Haeberli W. & Whiteman C.) 297–322 (Elsevier, 2021).

  • 14.

    Nelson, F. E., Anisimov, O. A. & Shiklomanov, N. I. Subsidence risk from thawing permafrost. Nature 410, 889–890 (2001).

    Google Scholar

  • 15.

    Nelson, F. E. Unfrozen in time. Science 299, 1673–1675 (2003).

    Google Scholar

  • 16.

    Instanes, A. et al. Changes to freshwater systems affecting Arctic infrastructure and natural resources. J. Geophys. Res. Biogeo. 121, 567–585 (2016).

    Google Scholar

  • 17.

    Grebenets, V., Streletskiy, D. & Shiklomanov, N. Geotechnical safety issues in the cities of polar regions. Geog. Environ. Sustain. 5, 104–119 (2012).

    Google Scholar

  • 18.

    Rajendran, S. et al. Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep. 11, 3817 (2021).

    Google Scholar

  • 19.

    Streletskiy, D. A. et al. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 14, 025003 (2019).

    Google Scholar

  • 20.

    Suter, L., Streletskiy, D. & Shiklomanov, N. Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar. Arctic. Polar Geogr. 42, 267–286 (2019).

    Google Scholar

  • 21.

    AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) (ed. Symon, C.) (Arctic Monitoring and Assessment Programme (AMAP), 2017).

  • 22.

    Gautier, D. L. et al. Assessment of undiscovered oil and gas in the Arctic. Science 324, 1175–1179 (2009).

    Google Scholar

  • 23.

    Cheng, G. D. & Zhao, L. The problems associated with permafrost in the development of the Qinghai–Xizang Plateau. Quat. Sci. 20, 521–531 (2000).

    Google Scholar

  • 24.

    Larsen, J. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (eds Barros V. J. et al.) 1567–1612 (Cambridge Univ. Press, 2014).

  • 25.

    Bordignon, F. A scientometric review of permafrost research based on textual analysis (1948–2020). Scientometrics 126, 417–436 (2021).

    Google Scholar

  • 26.

    Instanes, A. et al. in Arctic Climate Impact Assessment (eds Symon, C., Arris, L. & Heal B.) 908–944 (Cambridge Univ. Press, 2005).

  • 27.

    Callaghan, T. V. et al. in Snow, Water, Ice and Permafrost in the Arctic (SWIPA) (ed. Symon, C.) (Arctic Monitoring and Assessment Programme (AMAP), 2012).

  • 28.

    Doré, G., Niu, F. & Brooks, H. Adaptation methods for transportation infrastructure built on degrading permafrost. Permafr. Periglac. Process. 27, 352–354 (2016).

    Google Scholar

  • 29.

    Ford, J. D. et al. Evaluating climate change vulnerability assessments: a case study of research focusing on the built environment in northern Canada. Mitig. Adapt. Strat. Glob. Chang. 20, 1267–1288 (2015).

    Google Scholar

  • 30.

    Harris, S. A., Brouchkov, A. & Cheng, G. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms (CRC Press, 2017).

  • 31.

    Andersland, O. B. & Ladanyi, B. An Introduction to Frozen Ground Engineering (Springer Science & Business Media, 2013).

  • 32.

    Khrustalev, L. N. Geotechnical Fundamentals for Permafrost Regions [Russian] (Moscow State University, 2005).

  • 33.

    Shur, Y. L. & Goering, D. J. in Permafrost Soils (ed. Margesin, R.) 251–260 (Springer, 2009).

  • 34.

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar

  • 35.

    Chen, L., Fortier, D., McKenzie, J. & Sliger, M. Impact of heat advection on the thermal regime of roads built on permafrost. Hydrol. Process. 34, 1647–1664 (2020).

    Google Scholar

  • 36.

    Bjella, K. L. et al. Improving design methodologies and assessment tools for building on permafrost in a warming climate. ERDC https://hdl.handle.net/11681/38879 (2020).

  • 37.

    Larsen, P. H. et al. Estimating future costs for Alaska public infrastructure at risk from climate change. Glob. Environ. Change 18, 442–457 (2008).

    Google Scholar

  • 38.

    Dumais, S. & Konrad, J. M. Large-strain nonlinear thaw consolidation analysis of the Inuvik warm-oil experimental pipeline buried in permafrost. J. Cold Reg. Eng. 33, 04018014 (2019).

    Google Scholar

  • 39.

    Wu, B., Sheng, Y., Yu, Q., Chen, J. & Ma, W. Engineering in the rugged permafrost terrain on the roof of the world under a warming climate. Permafr. Periglac. Process. 31, 417–428 (2020).

    Google Scholar

  • 40.

    Streletskiy, D. A., Shiklomanov, N. I. & Nelson, F. E. Permafrost, infrastructure, and climate change: a GIS-based landscape approach to geotechnical modeling. Arct. Antarct. Alp. Res. 44, 368–380 (2012).

    Google Scholar

  • 41.

    Instanes, A. Incorporating climate warming scenarios in coastal permafrost engineering design — case studies from Svalbard and northwest Russia. Cold Reg. Sci. Tech. 131, 76–87 (2016).

    Google Scholar

  • 42.

    Abram, N. et al. IPCC special report on the ocean and cryosphere in a changing climate. Intergovernmental Panel on Climate Change (IPCC) https://www.ipcc.ch/srocc/home/ (2019).

  • 43.

    Arneth, A. et al. IPCC special report on climate change and land. Intergovernmental Panel on Climate Change (IPCC) https://www.ipcc.ch/report/srccl/ (2019).

  • 44.

    Kanevski, M., Connor, B., Schnabel, W. & Bjella, K. in Cold Regions Engineering 2019 (eds Bilodeau, J.-P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 588–596 (American Society of Civil Engineers (ASCE), 2019).

  • 45.

    Niu, F., Luo, J., Lin, Z., Liu, M. & Yin, G. Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai–Tibet engineering corridor, China. Nat. Hazards 74, 1667–1682 (2014).

    Google Scholar

  • 46.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Chang. 7, 263–267 (2017).

    Google Scholar

  • 47.

    Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).

    Google Scholar

  • 48.

    Deline, P. et al. in Snow and Ice-Related Hazards, Risks, and Disasters (eds Haeberli, W. & Whiteman, C.) 501–540 (Elsevier, 2021).

  • 49.

    Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).

    Google Scholar

  • 50.

    Romanovsky, V. E. et al. Terrestrial permafrost. Bull. Amer. Meteor. Soc. 101, S153–S156 (2020).

    Google Scholar

  • 51.

    Instanes, A. & Anisimov, O. in Proc. 9th Int. Conf. Permafrost (eds Kane, D. & Hinkel, K. M.) 779–784 (University of Alaska Fairbanks, 2008).

  • 52.

    Yokohata, T. et al. Model improvement and future projection of permafrost processes in a global land surface model. Prog. Earth Planet. Sci. 7, 69 (2020).

    Google Scholar

  • 53.

    Dobiński, W. Permafrost active layer. Earth Sci. Rev. 208, 103301 (2020).

    Google Scholar

  • 54.

    Luo, D. et al. Recent changes in the active layer thickness across the northern hemisphere. Environ. Earth Sci. 75, 555 (2016).

    Google Scholar

  • 55.

    Peng, X. et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the northern hemisphere. J. Clim. 31, 251–266 (2018).

    Google Scholar

  • 56.

    Liu, J., Wang, T., Tai, B. & Lv, P. A method for frost jacking prediction of single pile in permafrost. Acta Geotech. 15, 455–470 (2020).

    Google Scholar

  • 57.

    Yu, W. et al. Engineering risk analysis in cold regions: state of the art and perspectives. Cold Reg. Sci. Technol. 171, 102963 (2020).

    Google Scholar

  • 58.

    Ma, W. & Wang, D. Y. Frozen Soil Mechanics (Science Press, 2014).

  • 59.

    Ramage, J. et al. Population living on permafrost in the Arctic. Popul. Environ. 43, 22–38 (2021).

    Google Scholar

  • 60.

    Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 26, 1877–1900 (2013).

    Google Scholar

  • 61.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Google Scholar

  • 62.

    O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).

    Google Scholar

  • 63.

    Shiklomanov, N. I., Streletskiy, D. A., Grebenets, V. I. & Suter, L. Conquering the permafrost: urban infrastructure development in Norilsk, Russia. Polar Geogr. 40, 273–290 (2017).

    Google Scholar

  • 64.

    Shiklomanov, N. I., & Nelson, F. E. in Treatise on Geomorphology (eds Shroder, J., Giardino, R. & Harbor, J.) 354–373 (Academic, 2013).

  • 65.

    Luo, J., Niu, F., Lin, Z., Liu, M. & Yin, G. Thermokarst lake changes between 1969 and 2010 in the Beilu river basin, Qinghai–Tibet Plateau, China. Sci. Bull. 60, 556–564 (2015).

    Google Scholar

  • 66.

    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Google Scholar

  • 67.

    Niu, F., Luo, J., Lin, Z., Fang, J. & Liu, M. Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai–Tibet Plateau, China. Landslides 13, 55–65 (2016).

    Google Scholar

  • 68.

    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).

    Google Scholar

  • 69.

    Irrgang, A. M. et al. Drivers, dynamics and impacts of Arctic coasts in transition. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00232-1 (2022).


    Google Scholar

  • 70.

    Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).

    Google Scholar

  • 71.

    Anisimov, O. A. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson C. E.) 653–685 (Cambridge Univ. Press, 2007).

  • 72.

    Kronik, Y. A. in Proc. 2nd Conf. Russian Geocryologists (ed. Melnikov, V.) 138–146 (Moscow State University, 2001).

  • 73.

    Wu, Q. B., Dong, X. F., Liu, Y. Z. & Jin, H. J. Responses of permafrost on the Qinghai–Tibet Plateau, China, to climate change and engineering construction. Arct. Antarct. Alp. Res. 39, 682–687 (2007).

    Google Scholar

  • 74.

    Khrustalev, L. N., Parmuzin, S. Y. & Emelyanova, L. V. Reliability of Northern Infrastructure in Conditions of Changing Climate (University Book Press, 2011).

  • 75.

    Khrustalev, L. N. & Davidova, I. V. Forecast of climate warming and account of it at estimation of foundation reliability for buildings in permafrost zone. Earth Cryos. 11, 68–75 (2007).

    Google Scholar

  • 76.

    Gibson, C. M., Brinkman, T., Cold, H., Brown, D. & Turetsky, M. Identifying increasing risks of hazards for northern land-users caused by permafrost thaw: integrating scientific and community-based research approaches. Environ. Res. Lett. 16, 064047 (2021).

    Google Scholar

  • 77.

    Nyland, K. E. et al. Traditional Iñupiat ice cellars (SIĠḷUAQ) in Barrow, Alaska: characteristics, temperature monitoring, and distribution. Geogr. Rev. 107, 143–158 (2017).

    Google Scholar

  • 78.

    Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. & Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geogr. 31, 47–68 (2008).

    Google Scholar

  • 79.

    Streletskiy, D. & Shiklomanov, N. in Sustaining Russia’s Arctic Cities: Resource Politics, Migration, and Climate Change (ed. Orttung, R. W.) 201–220 (Berghahn Press, 2016).

  • 80.

    Streletskiy, D., Shiklomanov, N. & Grebenets, V. Changes of foundation bearing capacity due to climate warming in northwest Siberia. Earth Cryos. 16, 22–32 (2012).

    Google Scholar

  • 81.

    Streletskiy, D. A., Shiklomanov, N. I. & Hatleberg, E. in Proc. 10th Int. Conf. Permafrost (ed. Hinkel, K. M.) 407–412 (Northern Publisher, 2012).

  • 82.

    Harris, C. et al. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci. Rev. 92, 117–171 (2009).

    Google Scholar

  • 83.

    Humlum, O., Instanes, A. & Sollid, J. L. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Polar Res. 22, 191–215 (2003).

    Google Scholar

  • 84.

    Instanes, A. in Proc. 8th Int. Permafrost Conf. (eds Arenson, L. U., Phillips, M. & Springman, S. M.) 461–466 (CRC Press, 2003).

  • 85.

    Phillips, M. et al. Monitoring and reconstruction of a chairlift midway station in creeping permafrost terrain, Grächen, Swiss Alps. Cold. Reg. Sci. Technol. 47, 32–42 (2007).

    Google Scholar

  • 86.

    Jaskólski, M. W., Pawłowski, Ł. & Strzelecki, M. C. High Arctic coasts at risk — the case study of coastal zone development and degradation associated with climate changes and multidirectional human impacts in Longyearbyen (Adventfjorden, Svalbard). Land. Degrad. Dev. 29, 2514–2524 (2018).

    Google Scholar

  • 87.

    Duvillard, P. A., Ravanel, L., Marcer, M. & Schoeneich, P. Recent evolution of damage to infrastructure on permafrost in the French Alps. Reg. Environ. Change 19, 1281–1293 (2019).

    Google Scholar

  • 88.

    Jungsberg, L. et al. Adaptive capacity to manage permafrost degradation in northwest Greenland. Polar Geogr. https://doi.org/10.1080/1088937X.2021.1995067 (2021).


    Google Scholar

  • 89.

    Doré, G. & Zubeck, H. Cold Region Pavement Engineering Vol. 425 (McGraw-Hill Professional & American Society of Civil Engineers (ASCE) Press, 2009).

  • 90.

    Connor, B. & Harper, J. How vulnerable is Alaska’s transportation to climate change? Trans. Res. N. 284, 23–29 (2013).

    Google Scholar

  • 91.

    Brooks, H. Quantitative Risk Analysis for Linear Infrastructure Supported by Permafrost: Methodology and Computer Program. Doctoral dissertation, Univ. Laval (2018).

  • 92.

    McHattie, R. L. & Esch, D. C. in Proc. 5th Int. Conf. Permafrost (ed. Senneset, K.) 1292–1297 (Tapis Publishers, 1988).

  • 93.

    Tetra Tech EBA Inc. Inuvik Airport Runway Settlement Field Report (Government of Northwest Territories, Department of Transportation, Airport Division, 2014).

  • 94.

    Calmels, F. et al. Vulnerability of the North Alaska Highway to Permafrost Thaw: A Field Guide and Data Synthesis (ed. Halladay, P.) (Yukon Research Center, 2015).

  • 95.

    Calmels, F., Roy, L.-P., Grandmont, K. & Pugh R. Summary of Climate- and Geohazard-related Vulnerabilities for the Dempster Highway Corridor (Yukon Research Centre, 2018).

  • 96.

    Burn, C. et al. in GEOQuébec2015: Proc. 68th Canadian Geotechnical Conf. and 7th Canadian Permafrost Conf. 21–23 September 2015, Paper 705 (Canadian Geotechnical Society, 2015).

  • 97.

    De Guzman, E. M. B., Alfaro, M., Doré, G. & Arenson, L. U. Performance of highway embankments in the Arctic corridor constructed under winter conditions. Can. Geotech. J. 58, 722–736 (2021).

    Google Scholar

  • 98.

    L’Hérault, E., Allard, M., Barrette, C., Doré, G. & Sarrazin, D. Investigations géotechniques, caractérisation du pergélisol et stratégie d’adaptation dans un contexte de changements climatiques pour les aéroports d’Umiujaq, Inukjuak, Puvirnituq, Akulivik, Salluit, Quaqtaq, Kangirsuk et Tasiujaq, Nunavik. Rapport final (Center for Nordic Studies, Laval University, 2012).

  • 99.

    Levitt, M. Nation-Building at Home, Vigilance Beyond: Preparing for the Coming Decades in the Arctic (House of Commons, Ottawa, 2019).

  • 100.

    Zou, D. et al. A new map of permafrost distribution on the Tibetan plateau. Cryosphere 11, 2527–2542 (2017).

    Google Scholar

  • 101.

    Huang, Y. Z., Zhang, F. L. & Yang, X. Economic growth contribution and spatial effect of Tibet highway based on cryosphere service function accounting. J. Glaciol. Geocryo. 41, 719–729 (2019).

    Google Scholar

  • 102.

    Cheng, G. D. Influences of local factors on permafrost occurrence and their implications for Qinghai–Xizang Railway design. Sci. China Earth Sci. 47, 704–709 (2004).

    Google Scholar

  • 103.

    Ma, W., Mu, Y., Wu, Q., Sun, Z. & Liu, Y. Characteristics and mechanisms of embankment deformation along the Qinghai–Tibet Railway in permafrost regions. Cold Reg. Sci. Technol. 67, 178–186 (2011).

    Google Scholar

  • 104.

    Chai, M. et al. Characteristics of asphalt pavement damage in degradation permafrost regions: case study of the Qinghai–Tibet Highway, China. J. Cold Reg. Eng. 32, 05018003 (2018).

    Google Scholar

  • 105.

    Wang, S., Chen, J., Zhang, J. & Li, Z. Development of highway constructing technology in the permafrost region on the Qinghai–Tibet plateau. Sci. China Technol. Sci. 52, 497–506 (2009).

    Google Scholar

  • 106.

    Zhang, J., Huo, M. & Chen, J. Stability Technical Problems and Countermeasures of Highway Roadbed (China Communication, 2008).

  • 107.

    Ma, W., Qi, J. L. & Wu, Q. B. Analysis of the deformation of embankments on the Qinghai–Tibet Railway. J. Geotechn. Geoenviron. Eng. 134, 1645–1654 (2008).

    Google Scholar

  • 108.

    Wang, J. & Wu, Q. Settlement analysis of embankment-bridge transition section in the permafrost regions of Qinghai–Tibet Railway. J. Glaciol. Geocryol. 39, 79–85 (2017).

    Google Scholar

  • 109.

    Schweikert, A., Chinowsky, P., Kwiatkowski, K. & Espinet, X. The infrastructure planning support system: analyzing the impact of climate change on road infrastructure and development. Transp. Policy 35, 146–153 (2014).

    Google Scholar

  • 110.

    Chappin, E. J. L. & van der Lei, T. Adaptation of interconnected infrastructures to climate change: a socio-technical systems perspective. Util. Policy 31, 10–17 (2014).

    Google Scholar

  • 111.

    Anisimov, O. & Reneva, S. Permafrost and changing climate: the Russian perspective. Ambio 35, 169–175 (2006).

    Google Scholar

  • 112.

    Zhang, Z. & Wu, Q. Freeze–thaw hazard zonation and climate change in Qinghai–Tibet Plateau permafrost. Nat. Hazards 61, 403–423 (2012).

    Google Scholar

  • 113.

    Hong, E., Perkins, R. & Trainor, S. Thaw settlement hazard of permafrost related to climate warming in Alaska. Arctic 67, 93–103 (2014).

    Google Scholar

  • 114.

    Nelson, F. E., Anisimov, O. A. & Shiklomanov, N. I. Climate change and hazard zonation in the circum-Arctic permafrost regions. Nat. Hazards 26, 203–225 (2002).

    Google Scholar

  • 115.

    Daanen, R. P. et al. Permafrost degradation risk zone assessment using simulation models. Cryosphere 5, 1043–1056 (2011).

    Google Scholar

  • 116.

    Ni, J. et al. Risk assessment of potential thaw settlement hazard in the permafrost regions of Qinghai–Tibet Plateau. Sci. Total. Environ. 776, 145855 (2021).

    Google Scholar

  • 117.

    Karjalainen, O. et al. Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 6, 190037 (2019).

    Google Scholar

  • 118.

    Shiklomanov, N. I., Streletskiy, D. A., Swales, T. B. & Kokorev, V. A. Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geogr. Rev. 107, 125–142 (2017).

    Google Scholar

  • 119.

    Doré, M. & Burton, I. Costs of Adaptation to Climate Change in Canada: A Stratified Estimate by Sectors and Regions: Social Infrastructure (Brock University, 2001).

  • 120.

    Porfiriev, B. N. et al. Climate change impact on economic growth and specific sectors’ development of the Russian Arctic. Arctic Ecol. Econ. 4, 4–17 (2017).

    Google Scholar

  • 121.

    Porfiriev, B., Eliseev, D. & Streletskiy, D. Economic assessment of permafrost degradation effects on road infrastructure sustainability under climate change in the Russian Arctic. Her. Russ. Acad. Sci. 89, 567–576 (2019).

    Google Scholar

  • 122.

    Badina, S. V. Prediction of socioeconomic risks in the cryolithic zone of the Russian Arctic in the context of upcoming climate changes. Stud. Russ. Econ. Dev. 31, 396–403 (2020).

    Google Scholar

  • 123.

    Reimchen, D., Doré, G., Fortier, D., Stanley, B. & Walsh, R. in Proc. 2009. Annual Conf. Transportation Association of Canada 1–20 (Transportation Association of Canada, 2009).

  • 124.

    Porfiriev, B. N., Elisseev, D. O. & Streletskiy, D. A. Economic assessment of permafrost degradation effects on the housing sector in the Russian Arctic. Her. Russ. Acad. Sci. 91, 17–25 (2021).

    Google Scholar

  • 125.

    Cheng, G. A roadbed cooling approach for the construction of Qinghai–Tibet Railway. Cold. Reg. Sci. Technol. 42, 169–176 (2005).

    Google Scholar

  • 126.

    Bjella, K. L. Dalton Highway 9 to 11 Mile Expedient Resistivity Permafrost Investigation (Alaska Department of Transportation and Public Facilities, 2014).

  • 127.

    Ma, W., Cheng, G. & Wu, Q. Construction on permafrost foundations: lessons learned from the Qinghai–Tibet railroad. Cold Reg. Sci. Technol. 59, 3–11 (2009).

    Google Scholar

  • 128.

    Kondratiev, V. G. in ISCORD 2013: Planning for Sustainable Cold Regions (ed. Zufelt, J. E.) 541–548 (American Society of Civil Engineers (ASCE), 2013).

  • 129.

    Hu, T., Liu, J., Chang, J. & Hao, Z. Development of a novel vapor compression refrigeration system (VCRS) for permafrost cooling. Cold. Reg. Sci. Technol. 181, 103173 (2021).

    Google Scholar

  • 130.

    Chataigner, Y., Gosselin L. & Doré, G. in VIIIème Colloque Interuniversitaire Franco-Québécois sur la Thermique des Systems [French] (ed. Colloque Interuniversitaire Franco-Quebecois) 6 (Colloque Interuniversitaire Franco-Quebecois, 2007).

  • 131.

    Goering, D. J. & Kumar, P. Winter-time convection in open-graded embankments. Cold. Reg. Sci. Technol. 24, 57–74 (1996).

    Google Scholar

  • 132.

    Malenfant-Lepage, J., Doré, G., Fortier, F. & Murchison, P. in Proc. 10th Int. Conf. Permafrost (ed. Hinkel, K. M.) 261–267 (Northern Publisher, 2012).

  • 133.

    Cheng, G., Wu, Q. & Ma, W. Engineering effect of proactive roadbed-cooling for the Qinghai–Tibet Railway. Sci. China 52, 530–538 (2009).

    Google Scholar

  • 134.

    Wu, Q., Zhao, H., Zhang, Z., Chen, J. & Liu, Y. Long-term role of cooling the underlying permafrost of the crushed rock structure embankment along the Qinghai–Xizang Railway. Permafr. Periglac. Process. 31, 172–183 (2020).

    Google Scholar

  • 135.

    Zhang, M. Y. et al. Evaluating the cooling performance of crushed-rock interlayer embankments with unperforated and perforated ventilation ducts in permafrost regions. Energy 93, 874–881 (2015).

    Google Scholar

  • 136.

    Kong, X., Doré, G., Calmels, F. & Lemieux, C. Modeling the thermal response of air convection embankment in permafrost regions. Cold Reg. Sci. Technol. 182, 103169 (2020).

    Google Scholar

  • 137.

    Niu, F. et al. Long-term thermal regimes of the Qinghai–Tibet Railway embankments in plateau permafrost regions. Sci. China Earth Sci. 58, 1669–1676 (2015).

    Google Scholar

  • 138.

    Kuznetsov, G. et al. Heat transfer in a two-phase closed thermosyphon working in polar regions. Therm. Sci. Eng. Prog. 22, 100846 (2021).

    Google Scholar

  • 139.

    Forsström, A., Long, E., Zarling, J. & Knutsson, S. in Proc. 11th Int. Conf. on Cold Regions Engineering (ed. Merrill, K. S.) 645–655 (American Society of Civil Engineers, 2002).

  • 140.

    Hayley D. W., Roggensack, W. D., Jubien, W. E. & Johnson, P. V. in Proc. 4th Int. Conf. Permafrost (ed. Embleton, C.) 468–473 (National Academy Press, 1983).

  • 141.

    Chen, L., Yu, W., Lu, Y. & Liu, W. Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone. Appl. Therm. Eng. 128, 1624–1633 (2018).

    Google Scholar

  • 142.

    Wang, S., Niu, F., Chen, J. & Dong, Y. Permafrost research in China related to express highway construction. Permafr. Periglac. Process. 31, 406–416 (2020).

    Google Scholar

  • 143.

    Wagner A. M., Zarling J. P., Yarmak E. & Long E. L. in Proc. GEO2010 (ed. Canadian Geotechnical Society) 1770–1776 (Canadian Geotechnical Society, 2010).

  • 144.

    Song, Y., Jin, L. & Zhang, J. In-situ study on cooling characteristics of two-phase closed thermosyphon embankment of Qinghai–Tibet Highway in permafrost regions. Cold Reg. Sci. Technol. 93, 12–19 (2013).

    Google Scholar

  • 145.

    Doré, G., Ficheur A., Guimond A. & Boucher M. in Cold Regions Engineering 2012: Sustainable Infrastructure Development in a Changing Cold Environment (ed. Morse, B.) 32–41 (American Society of Civil Engineers, 2012).

  • 146.

    Cheng, G., Zhang, J., Sheng, Y. & Chen, J. Principle of thermal insulation for permafrost protection. Cold Reg. Sci. Technol. 40, 71–79 (2004).

    Google Scholar

  • 147.

    Bjella, K. in ISCORD 2013: Planning for Sustainable Cold Regions (ed. Zufelt, J. E.) 565–575 (American Society of Civil Engineers (ASCE), 2013).

  • 148.

    Johnston, G. H. in Proc. 4th Int. Conf. Permafrost (ed. Embleton, C.) 548–553 (National Academies Press, 1983).

  • 149.

    Esch, D. C. in Proc. 5th Int. Conf. Permafrost (ed. Senneset, K.) 1223–1228 (Tapis Publishers, 1988).

  • 150.

    Richard, C., Doré, G., Lemieux, C., Bilodeau, J. P. & Haure-Touzé, J. in Cold Regions Engineering 2015: Developing and Maintaining Resilient Infrastructure (ed. Guthrie, W. S.) 181–192 (American Society of Civil Engineers (ASCE), 2015).

  • 151.

    Dumais, S. & Doré, G. An albedo based model for the calculation of pavement surface temperatures in permafrost regions. Cold Reg. Sci. Technol. 123, 44–52 (2015).

    Google Scholar

  • 152.

    Fortier, D., Sliger, M. & Rioux, K. Performance Assessment of the Thermo-Reflective Snow-Sun Sheds at the Beaver Creek Road Experimental Site (University of Montreal, 2018).

  • 153.

    Feng, W. J., Ma, W., Li, D. Q. & Zhang, L. Application investigation of awning to roadway engineering on the Qinghai–Tibet Plateau. Cold Reg. Sci. Technol. 45, 51–58 (2006).

    Google Scholar

  • 154.

    Esch, D. C. in Proc. 4th Canadian Permafrost Conf. (ed. French, H. M.) 560–569 (National Research Council of Canada, 1982).

  • 155.

    Alfaro, M. C., Blatz, J. A. & Graham, J. Geosynthetic reinforcement for embankments over degrading discontinuous permafrost subjected to prestressing. Lowl. Technol. Intern. 8, 47–54 (2006).

    Google Scholar

  • 156.

    Grechishchev, S. E., Kazarnovsky, V. D., Pshenichnikova, Y. S. & Sheshin, Y. B. in Proc. 8th Int. Permafrost Conf. (eds Phillips, M., Springman, S. M. & Arenson, L. U.) 309–311 (A. A. Balkema, 2003).

  • 157.

    Rooney, J. W. & Johnson, E. G. in Embankment Design and Construction in Cold Regions (ed. Johnson, E. G.) 13–34 (American Society of Civil Engineers, 1988).

  • 158.

    De Guzman, E. M. B. Structural Stability of Highway Embankments in the Arctic Corridor. Doctoral dissertation, Univ. Manitoba (2020).

  • 159.

    Yu, Q. H., Mu, Y. H., Yuan, C., Ma, W. & Pan, X. C. The cold accumulative effect of expressway embankment with a combined cooling measure in permafrost zones. Cold Reg. Sci. Technol. 163, 59–67 (2019).

    Google Scholar

  • 160.

    Stephani, E., Fortier, D., Shur, Y., Fortier, R. & Doré, G. A geosystems approach to permafrost investigations for engineering applications, an example from a road stabilization experiment, Beaver Creek, Yukon, Canada. Cold Reg. Sci. Technol. 100, 20–35 (2014).

    Google Scholar

  • 161.

    Bjella, K. L. in GeoCalgary2010: Proc. 63rd Canadian Geotechnical Conf. and 6th Canadian Permafrost Conf. (eds Kwok, C., Moorman, B., Armstrong, R. & Henderson, J.) 970–977 (Canadian Geotechnical Society, 2010).

  • 162.

    Shiklomanov, N. From exploration to systematic investigation: development of geocryology in 19th- and early-20th-century Russia. Phys. Geogr. 26, 249–263 (2005).

    Google Scholar

  • 163.

    Streletskiy, D., Anisimov, O. & Vasiliev, A. in Snow and Ice-Related Hazards, Risks, and Disasters (eds Haeberli, W. & Whiteman, C.) 303–344 (Elsevier, 2014).

  • 164.

    Yu, Q. H., Ji, Y., Zhang, Z., Wen, Z. & Feng, C. Design and research of high voltage transmission lines on the Qinghai–Tibet plateau — a special issue on the permafrost power lines. Cold Reg. Sci. Technol. 121, 179–186 (2016).

    Google Scholar

  • 165.

    Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 1–11 (2020).

    Google Scholar

  • 166.

    Garnello, A. et al. Projecting permafrost thaw of sub-Arctic tundra with a thermodynamic model calibrated to site measurements. J. Geophys. Res. Biogeosci. 126, e2020JG006218 (2021).

    Google Scholar

  • 167.

    Schneider von Deimling, T. et al. Consequences of permafrost degradation for Arctic infrastructure — bridging the model gap between regional and engineering scales. Cryosphere 15, 2451–2471 (2021).

    Google Scholar